Contents
從圖表示學習(Graph Representation Learning)到圖神經網路(完整的 GNN – Graph Neural Network 入門課程)
從這 4.5 小時的課程,你會學到
- 圖表示學習( Graph Representation Learning )
- 圖神經網路 ( GNN )
- 圖分析( Graph Analysis )
- 圖嵌入( Graph Embedding )
- 深度步行( DeepWalk )
- Node2Vec
- 圖卷積網路 ( Graph Convolution Network,GCN )
- 圖關注網路( Graph Attention Network ,GAT )
- 簡化圖卷積 ( Simplifying Graph Convolution,SGC )
- 歸納和轉導學習( Inductive and Transudative Learning )
- GraphSAGE
- Pytorch 幾何( Geometric )
- 卷積( Convolution )
要求
- 機器學習和深度學習入門
- 訊號處理和資料分析入門
- 代數
- Python
課程說明
近年來,圖神經網路(Graph Neural Network,GNN)以其強大的表示能力和出色的性能在各個領域越來越受歡迎。圖結構允許我們捕獲具有複雜結構和關係的資料,而 GNN 為我們提供了研究和建模這種複雜資料展示的機會,用於分類、聚類、鏈接預測和健全表示等任務。
雖然 GNN 起源的第一個動機可以追溯到 1997 年,但僅僅在幾年前(大約 2017 年),圖的深度學習才開始引起很多關注。
由於這個概念相對較新,大部分知識都是通過會議和期刊論文學習的,當我開始學習 GNN 時,我很難知道要從哪裡開始和閱讀哪些內容,因為沒有可用於構建這方面的課程。因此,我自己創作了這門課,目的是構建學習材料並為 GNN 提供快速完整的入門課程。
本課程將為學習圖神經網路( GNN )提供完整的入門資料。通過完成本課程,你將在理論和實踐方面對該主題有一個很好的理解。
這意味著你將看到數學和程式碼。
如果你想開始學習圖神經網路( GNN ),這絕對適合你。
如果你希望能夠在 PyTorch Geometric 中實現圖神經網路模型,那麼這就是你要的課程。
目標受眾
- 工程研究生
- 計算機科學研究生
- 資料科學家
- 有興趣學習圖神經網路的 Python 開發人員
- 深度學習工程師
- 機器學習工程師
- 訊號處理工程師
- 神經網路熱情
講師簡介
Younes Sadat-Nejad 白天做學術研究員,晚上做企業家
我是生物醫學工程博士。 多倫多大學(UofT)的候選人。 我的研究重點是使用無監督圖神經網路模型對 MRI/fMRI 資料進行聚類( clustering )。
我也是 Humber College 應用科學與技術學院的兼職講師。
加拿大新創公司 Veebar Tech 的首席技術長兼聯合創始人,專注於為有聽力障礙和癡呆症的老年人開發基於 AI-IoT 的智能家居監控解決方案。
英文字幕:有
- 想要了解如何將英文字幕自動翻譯成中文? 請參考這篇 How-To
- 點選這個✨優惠連結✨ 課程特價 | Udemy 永久擁有課程 NT330 起( 在電腦瀏覽器登入,點選“優惠連結”後再回想要的課程介紹中點選“報名參加課程”即可取得 )
- Udemy 現在越來越多課程有中文字幕,請參考 Soft & Share 中文線上課程
- 手機上點選優惠連結看到的價格比電腦上看到的貴
- $代表當地貨幣, 如在台灣為 NT
- 點選”報名參加課程”有可能因瀏覽器 cookies 轉久一點或回報錯誤而無法連上,請稍等刷新或重新點選就會出現